本文共 6659 字,大约阅读时间需要 22 分钟。
阅读目录
NetworkX是一个用Python语言开发的图论与复杂网络建模工具,内置了常用的图与复杂网络分析算法,可以方便的进行复杂网络数据分析、仿真建模等工作。networkx支持创建简单无向图、有向图和多重图(multigraph);内置许多标准的图论算法,节点可为任意数据;支持任意的边值维度,功能丰富,简单易用。
引入模块
import networkx as nxprint nx
例1:
#!-*- coding:utf8-*- import networkx as nximport matplotlib.pyplot as pltG = nx.Graph() #建立一个空的无向图GG.add_node(1) #添加一个节点1G.add_edge(2,3) #添加一条边2-3(隐含着添加了两个节点2、3)G.add_edge(3,2) #对于无向图,边3-2与边2-3被认为是一条边print "nodes:", G.nodes() #输出全部的节点: [1, 2, 3]print "edges:", G.edges() #输出全部的边:[(2, 3)]print "number of edges:", G.number_of_edges() #输出边的数量:1nx.draw(G)plt.savefig("wuxiangtu.png")plt.show()
输出
1 2 3 | nodes: [1, 2, 3] edges: [(2, 3)] number of edges: 1 |
例2:
#-*- coding:utf8-*- import networkx as nximport matplotlib.pyplot as pltG = nx.DiGraph()G.add_node(1)G.add_node(2) #加点G.add_nodes_from([3,4,5,6]) #加点集合G.add_cycle([1,2,3,4]) #加环G.add_edge(1,3) G.add_edges_from([(3,5),(3,6),(6,7)]) #加边集合nx.draw(G)plt.savefig("youxiangtu.png")plt.show()
例1:
#!-*- coding:utf8-*- import networkx as nximport matplotlib.pyplot as pltG = nx.DiGraph()G.add_node(1)G.add_node(2)G.add_nodes_from([3,4,5,6])G.add_cycle([1,2,3,4])G.add_edge(1,3)G.add_edges_from([(3,5),(3,6),(6,7)])nx.draw(G)plt.savefig("youxiangtu.png")plt.show()
注:有向图和无向图可以互相转换,使用函数:
例2,例子中把有向图转化为无向图:
#!-*- coding:utf8-*- import networkx as nximport matplotlib.pyplot as pltG = nx.DiGraph()G.add_node(1)G.add_node(2)G.add_nodes_from([3,4,5,6])G.add_cycle([1,2,3,4])G.add_edge(1,3)G.add_edges_from([(3,5),(3,6),(6,7)])G = G.to_undirected()nx.draw(G)plt.savefig("wuxiangtu.png")plt.show()
注意区分以下2例
例3-1
#-*- coding:utf8-*-import networkx as nximport matplotlib.pyplot as pltG = nx.DiGraph()road_nodes = { 'a': 1, 'b': 2, 'c': 3}#road_nodes = {'a':{1:1}, 'b':{2:2}, 'c':{3:3}}road_edges = [('a', 'b'), ('b', 'c')]G.add_nodes_from(road_nodes.iteritems())G.add_edges_from(road_edges)nx.draw(G)plt.savefig("youxiangtu.png")plt.show()
例3-2
#-*- coding:utf8-*-import networkx as nximport matplotlib.pyplot as pltG = nx.DiGraph()#road_nodes = {'a': 1, 'b': 2, 'c': 3}road_nodes = { 'a':{1:1}, 'b':{2:2}, 'c':{3:3}}road_edges = [('a', 'b'), ('b', 'c')]G.add_nodes_from(road_nodes.iteritems())G.add_edges_from(road_edges)nx.draw(G)plt.savefig("youxiangtu.png")plt.show()
有向图和无向图都可以给边赋予权重,用到的方法是add_weighted_edges_from,它接受1个或多个三元组[u,v,w]作为参数,其中u是起点,v是终点,w是权重。
例1:
#!-*- coding:utf8-*- import networkx as nximport matplotlib.pyplot as pltG = nx.Graph() #建立一个空的无向图GG.add_edge(2,3) #添加一条边2-3(隐含着添加了两个节点2、3)G.add_weighted_edges_from([(3, 4, 3.5),(3, 5, 7.0)]) #对于无向图,边3-2与边2-3被认为是一条边print G.get_edge_data(2, 3)print G.get_edge_data(3, 4)print G.get_edge_data(3, 5)nx.draw(G)plt.savefig("wuxiangtu.png")plt.show()
输出
{}{ 'weight': 3.5}{ 'weight': 7.0}
计算1:求无向图的任意两点间的最短路径
# -*- coding: cp936 -*-import networkx as nximport matplotlib.pyplot as plt #计算1:求无向图的任意两点间的最短路径G = nx.Graph()G.add_edges_from([(1,2),(1,3),(1,4),(1,5),(4,5),(4,6),(5,6)])path = nx.all_pairs_shortest_path(G)print path[1]
计算2:找图中两个点的最短路径
import networkx as nxG=nx.Graph()G.add_nodes_from([1,2,3,4])G.add_edge(1,2)G.add_edge(3,4)try: n=nx.shortest_path_length(G,1,4) print nexcept nx.NetworkXNoPath: print 'No path'
距离
例1:弱连通
#-*- coding:utf8-*- import networkx as nximport matplotlib.pyplot as plt#G = nx.path_graph(4, create_using=nx.Graph())#0 1 2 3G = nx.path_graph(4, create_using=nx.DiGraph()) #默认生成节点0 1 2 3,生成有向变0->1,1->2,2->3G.add_path([7, 8, 3]) #生成有向边:7->8->3for c in nx.weakly_connected_components(G): print cprint [len(c) for c in sorted(nx.weakly_connected_components(G), key=len, reverse=True)]nx.draw(G)plt.savefig("youxiangtu.png")plt.show()
执行结果
set([0, 1, 2, 3, 7, 8])[6]
例2:强连通
#-*- coding:utf8-*- import networkx as nximport matplotlib.pyplot as plt#G = nx.path_graph(4, create_using=nx.Graph())#0 1 2 3G = nx.path_graph(4, create_using=nx.DiGraph())G.add_path([3, 8, 1])#for c in nx.strongly_connected_components(G):# print c##print [len(c) for c in sorted(nx.strongly_connected_components(G), key=len, reverse=True)]con = nx.strongly_connected_components(G)print conprint type(con)print list(con)nx.draw(G)plt.savefig("youxiangtu.png")plt.show()
执行结果
[set([8, 1, 2, 3]), set([0])]
#-*- coding:utf8-*- import networkx as nximport matplotlib.pyplot as pltG = nx.DiGraph()G.add_path([5, 6, 7, 8])sub_graph = G.subgraph([5, 6, 8])#sub_graph = G.subgraph((5, 6, 8)) #ok 一样nx.draw(sub_graph)plt.savefig("youxiangtu.png")plt.show()
#原图
#-*- coding:utf8-*-import networkx as nximport matplotlib.pyplot as pltG = nx.DiGraph()road_nodes = { 'a':{ 'id':1}, 'b':{ 'id':1}, 'c':{ 'id':3}, 'd':{ 'id':4}}road_edges = [('a', 'b'), ('a', 'c'), ('a', 'd'), ('b', 'd')]G.add_nodes_from(road_nodes)G.add_edges_from(road_edges)nx.draw(G)plt.savefig("youxiangtu.png")plt.show()
图
#过滤函数
#-*- coding:utf8-*-import networkx as nximport matplotlib.pyplot as pltG = nx.DiGraph()def flt_func_draw(): flt_func = lambda d: d['id'] != 1 return flt_funcroad_nodes = { 'a':{ 'id':1}, 'b':{ 'id':1}, 'c':{ 'id':3}, 'd':{ 'id':4}}road_edges = [('a', 'b'), ('a', 'c'), ('a', 'd'), ('b', 'd')]G.add_nodes_from(road_nodes.iteritems())G.add_edges_from(road_edges)flt_func = flt_func_draw()part_G = G.subgraph(n for n, d in G.nodes_iter(data=True) if flt_func(d))nx.draw(part_G)plt.savefig("youxiangtu.png")plt.show()
图
#-*- coding:utf8-*-import networkx as nximport matplotlib.pyplot as pltG = nx.DiGraph()road_nodes = { 'a':{ 'id':1}, 'b':{ 'id':1}, 'c':{ 'id':3}}road_edges = [('a', 'b'), ('a', 'c'), ('c', 'd')]G.add_nodes_from(road_nodes.iteritems())G.add_edges_from(road_edges)print G.nodes()print G.edges()print "a's pred ", G.pred['a']print "b's pred ", G.pred['b']print "c's pred ", G.pred['c']print "d's pred ", G.pred['d']print "a's succ ", G.succ['a']print "b's succ ", G.succ['b']print "c's succ ", G.succ['c']print "d's succ ", G.succ['d']nx.draw(G)plt.savefig("wuxiangtu.png")plt.draw()
结果
1 2 3 4 5 6 7 8 9 10 11 12 | [ 'a' , 'c' , 'b' , 'd' ] [( 'a' , 'c' ), ( 'a' , 'b' ), ( 'c' , 'd' )] a's pred {} b 's pred {' a': {}} c 's pred {' a': {}} d 's pred {' c': {}} a 's succ {' c ': {}, ' b': {}} b's succ {} c 's succ {' d': {}} d's succ {} |
本文转自jihite博客园博客,原文链接:http://www.cnblogs.com/kaituorensheng/p/5423131.html,如需转载请自行联系原作者